
Migration From APL2 to APL/W
by Rex Swain

Introduction
I’ve recently spent a fair amount of time migrating workspaces from IBM’s APL2
to Dyadic System’s APL/W. This article, a review of various features that will
require conversion, is an effort to help anyone else who is either contemplating or
actually charged with a similar migration task.

Of course, all us techies know that what really should be done is a complete re-
design and re-coding of the entire application! Segregate the logic, user interface,
and database stuff, create a proper event-driven GUI, and so on. But sometimes
project funding realities require compromise, typically spelled p-o-r-t.

APL is remarkably portable in general. But if you are considering an APL2 to
APL/W migration, there are many issues that will slow down what you may
have thought would be a quick job. Hopefully the advice here will enable you to
anticipate the full scope of a migration effort, save you a bit of work, and help you
react calmly to errors in code that used to run just fine.

I should point out that Dyalog APL doesn’t purport to be identical to APL2, and
considering the circumstances, it is surprisingly similar. Dyalog was based on
STSC’s NARS version of the language. APL2 (even the pre-release IUP version)
wasn’t released until they had fixed the language specification and coded most of
the product. It is Dyadic’s intention to develop closer compatibility with APL2,
and they have already made good progress.

My specific experience involved moving from APL2 version 2.2 under VM/CMS
(sometimes called “APL2/370”) to Dyalog APL/W version 7.1 under Windows
for Workgroups, but I believe that the bulk of these issues would be relevant with
other releases.

Types of Differences
There are several classes of differences that will require changes:

1. Many differences are easy to find with a simple workspace searching tool. For
example, •TF is not supported in APL/W, so scan all functions for any

occurrence of •TF, and replace with an emulation function. In this case, you
can find every instance without ever actually executing the application code.

2. Some differences require a more sophisticated search that may not find 100% of
the cases. E.g., optional left arguments must be enclosed in braces in APL/W
function headers. So search all dyadic functions for •NC of the left argument,
and where found, wrap the argument in braces. This will almost always suffice,
but one can easily imagine tricky cases where the argument is never referenced
in any obvious way.

3. Some differences are very difficult to find mechanically. E.g., 1 0 1/š4û‚â3
works in APL2 but causes a LENGTH ERROR in APL/W; you need to enclose
the left argument to get this working.

The good news about these first three classes is that they blow up with errors
when executed, so even if you can’t find them all programatically, at least if you
exercise your application long enough they will announce themselves. The bad
news, of course, is that this assumes that your application is straightforward
enough that you can test all possible execution paths and data cases. (More
probably, your end-users will eventually become conversion beta testers.)

Unfortunately, there are two more classes...

4. Some differences are a nightmare! E.g., the spacing of results from monadic
format may be slightly different in APL/W, depending on the depth and
structure of its argument. In the workspaces I worked on, there seemed to be
1E6 uses of monadic format, and of course the structure of the argument is not
always immediately obvious. These are the worst kind of differences, because
the code executes just fine and the result is only subtly different, and the
difference may or may not be significant in the context of your application.

5. Finally, there is all the operating system dependent stuff. Some of this can be
extremely difficult (or impossible) to emulate, and may require you to
implement a totally different (but more appropriate) solution.

Following is your migration task list...

Getting Started
• Transfer your workspaces from APL2 to APL/W. Dyadic supplies a

workspace WDYALOG\WS\APL2IN that helps to read APL2 transfer files created
by)OUT. I wrote an enhanced version which Dyadic distributes in workspace
WDYALOG\OUTPRODS\TOOLS\APL2IN2.

• Set APL/W’s migration level with •ML�3. This will immediately solve several
compatibility issues:

Z�îR Enlist (not Type)
Z�ŒR First (not Mix)
Z�ƒR Mix (not First)
Z�ðR Absolute value of depth
Z�LƒR Partitioned enclose
Z�•TC Order of terminal control characters

• Check for dependence on any APL2 invocation options, especially:

DATEFORM Format for timestamps
DEBUG Suppress •LX, etc.
INPUT Queue input strings
QUIET Suppress output
RUN Auto-invoke function via •NA
TERMCODE(-1) Controlled invocation

Character Sets
• Beware of the atomic vector (any reference to •AV)! The order of characters is

very different.

• Remember that the EBCDIC and ANSI character sets are quite different. Even
characters that seem straightforward may not be — single quotes, vertical bars,
and exclamation points should be examined carefully. Watch out for national
language characters and currency symbols.

Also remember that characters read from PC files into APL/W may pass
through Dyalog’s APLT=WIN.DOT translation mechanism. So you really have
at least three character sets to worry about: EBCDIC, ANSI and •AV.

• Watch out for four overstruck APL2 symbols not present in APL/W’s •AV:

¥ ¤ Š ˆ

Luckily, they don’t actually do anything in APL2, so they probably won’t
matter much.

Different Syntax
• Wrap braces around optional left arguments. For example, if in APL2 you

had:

 ì R�A FOO B
[1] …(0†•NC 'A')ûL1 ¦ Left arg supplied?
[2] A�â0 ¦ Default left arg
[3] L1:

In APL/W you need to change to header to:

 ì R�{A}FOO B

I was able to automatically convert 99% of these cases by writing a workspace
searching tool that inspects all dyadic functions for •NC'leftarg' and makes
the appropriate change in the header.

• You cannot assign system variables in APL/W. So if your APL2 functions use
them as a sink (e.g., •WA�) you will have to convert. I never liked this
technique anyway; I always define a “no-op” function called SINK:

 ì SINK A
[1] ¦ Throw away argument
 ì

Then globally change all '•WA�' and '•TS�' and etc. to 'SINK '.

Or, you may be able to exploit APL/W’s “shy” explicit result feature — if you
find •WA�FOO X, you can change FOO’s header to ì{R}�FOO A and then just
execute FOO X.

• Trace and stop controls are different. Use APL/W’s •TRACE'FOO' and
•STOP'FOO' rather than APL2’s T‘FOO� and S‘FOO�. (Note that APL/W
also has a much fancier interactive trace facility; see Trace on the Action menu.)

Same Syntax, Limited Capability
• Some complex forms of selective assignment are not permitted in APL/W. For

example, with a 3 by 4 matrix M, something like:

(1 0 1/M[;4])�0

works in APL2 but generates a DOMAIN ERROR in APL/W. You will have to
re-code this as:

Q�M[;4] ¨ (1 0 1/Q)�0 ¨ M[;4]�Q

Similarly, (AƒB)[I]�X does not work in APL/W.

• Some APL/W primitive functions generate errors when reduction is applied
to an empty array. For example, in the case of ,/â0 APL2 returns ‚â0
whereas APL/W signals a DOMAIN ERROR.

• Does your code use •DL to delay? APL/W does not permit fractional
arguments, so something like •DL 1.5 will generate a DOMAIN ERROR.

Same Syntax, But Works Differently
• Watch out for the rank of the result of some system functions. In APL2,
•NC 'A' returns a scalar, but APL/W returns a one-element vector. This can
escalate into a depth problem if you execute •NCšA. Monadic •SVO also
exhibits this behavior.

• Compress-each is interpreted differently. For example, in APL2:

 1 0 1/šV�4û‚â3
 1 3 1 3 1 3 1 3

With APL/W, you will need to enclose the compression vector:

 1 0 1/šV
LENGTH ERROR
 (‚1 0 1)/šV
 1 3 1 3 1 3 1 3

• Strand indexing is interpreted differently. For instance:

X Y Z[I]

In APL2, the I indexes just Z, but in APL/W, the I indexes the three-item
vector (X Y Z). So for APL/W you will have to convert this to:

X Y (Z[I])

• Strand assignment of an enclosed scalar is treated differently:

(X Y)�‚'ABC'

is treated as:

X�Y�'ABC' ¦ APL2
X�Y�‚'ABC' ¦ APL/W

• APL/W’s name class does not like system functions and variables. In APL2,
•NC '•AV' reports 2 and •NC '•CR' reports 3, whereas APL/W reports ý1
in both cases.

Also, in APL/W it is possible for •NC to return a 9. So watch out if you have
tools that do something like Z�'IULVFO'[ý1 0 1 2 3 4â•NC A].

• Beware of applying a user-defined function to an empty array with each. In
APL2, if you execute Z�FOOšâ0, FOO is never actually executed, and the result
Z is based on the prototype of the FOO’s argument. In APL/W, FOO is executed
once with an argument based on the prototype of FOO’s argument, and the
result Z is based on the prototype of FOO’s result R.

 ì R�FOO A
[1] •�'Arg is:' A
[2] R�2 4 6
 ì

 DISPLAY Z�FOOšâ0 ¦ APL/W
 Arg is: 0
.é--------.
þ .…----. þ
þ þ0 0 0þ þ
þ '~----' þ
'î--------'

 DISPLAY Z�FOOšâ0 ¦ APL2
.é.
þ0þ
'~'

This is a nasty one to detect in advance. Your function may not be prepared to
handle a zero or empty argument.

• When monadic format is applied to a nested array, the spacing of the result is
sometimes different. I first noticed this in mainframe code that composed short
messages with format, such as (using ø to represent blanks):

 •�ô'FOUND' 9 'DOCUMENTS'
øFOUNDøø9øøDOCUMENTSø ¦ APL/W
øFOUNDø9øDOCUMENTSø ¦ APL2

There are also subtle differences when some more complex nested arrays are
formatted. So if your code relies on a certain number of blanks, beware.

Emulation (or Re-Coding) Required
• Format-by-example is not available in APL/W. So every time you see

something like '550.03333%'ôA you have some work to do! (And don’t
forget that in APL2, •FC[1] might be sneaky and change the decimal point to
some other character!)

• The index function © (sometimes called “squish-quad”) is not supported in
APL/W. Dyalog APL does have plenty of ways to do indexing, so conversion
should not be too much of a problem.

• APL/W does not support n-wise reduction (as in 2+/A). The 2-line user-
defined operator NWISE that Dyadic supplies in workspace WDYALOG\WS\OPS
can help to emulate this feature. I wrote a more complete version that is also
somewhat less prone to WS FULL.1

• Scalar functions over an axis are not supported in APL/W, so if your APL2
code does things like MATRIX+[2]VECTOR you will have to change them. I
use a user-defined operator called AXIS.1

• Write emulation functions for missing APL2 system functions, as required:

•AF Atomic Function
•AT Attributes2
•EA Execute Alternate
•EC Execute Controlled
•ES Event Simulation
•FX Fix (dyadic: with execution properties)
•TF Transfer Format
•UCS Universal Character Set

• Write emulation functions for missing APL2 system variables, as required:

•EM Event Message
•ET Event Type
•FC Format Control
•L Left argument
•NLT National Language Translation
•PR Prompt Replacement
•R Right argument
•TZ Time Zone
•UL User Load

• Name associate is very different. Write emulation functions for anything
involving •NA, including:

10 •NA REXX
11 •NA Access external routines
12 •NA Files as arrays

• Write emulation functions for APL2 external supplied routines, including:

‘FM, ‘FV, ‘F File read/write/query
‘EXEC Execute REXX
ATR, CTN, CAN, DAN Data conversion routines
EXP, PACKAGE, QNS Namespaces and name scopes3
IN, OUT Like)IN and)OUT
EDITOR2, EDITORX Interface to editors

Development Environment
• The APL/W session manager is totally different. Inspect your workspaces for

use of APL2’s AP120.

• The APL/W function editor is totally different, so it’s time for you to learn yet
another editor. (At least it supports cut and paste!)

System Commands
• Note that APL/W does not support some APL2 system commands:

)CHECK)EDITOR)HOST)IN
)MCOPY)MORE)NMS)OUT
)PBS)PIN)QUOTA)SIC
)SIS)SYMBOLS

• Also note that some APL2 system command arguments are not supported in
APL/W:

)FNS,)VARS, and)OPS do not accept a range of names
)RESET does not allow an argument

• Are you using APL2 utilities that execute system commands via the stack and
capture their “results”? If so, you’ll need a different technique. APL/W
generally makes this easy — it has many more matching system functions that
return explicit results (like •WSID, which is inexplicably missing in APL2).

External Communication
• Anything involving shared variables will probably need conversion.

• Anything involving auxiliary processors will probably need conversion.

The Operating System
• Don’t forget all operating system dependent non-APL facilities, such as:

The CMS stack
System command language (REXX)
System editor (XEDIT)
Document composition (DCF/Script)
CMS Pipelines
System file I/O (flat files, etc.)
Other data access methods (VSAM, etc.)
Database (SQL)
Graphics (GDDM)
VM Backup/Archive
VM Schedule

Network Communications
• Review your application’s use of your mainframe communications network.

Will remote users be able to access the new system through the same network?
Can you dial in from home? Are you sending jobs to an MVS system?

User Interface
• And, last but not least, there’s the user interface! The procedural vs. event-

driven issue is a huge topic in its own right. Suffice to say that unless you want
to do extensive re-coding, you will probably be forced to make some
compromises here.

Conclusion
This list is, of course, not necessarily complete — these are just the problems I
have run into so far, and I’m sure there are more lurking.

It would be a mistake to come away from reading this with the impression that
Dyalog APL/W is missing a lot of APL features — in fact, it’s just missing some
APL2 features, and it has many compensating and additional features that APL2

does not have. I mean for all this to be free of value judgments — I’ll leave it to
you to decide whether one system does things “better” than the other.

18 March 1996

Rex Swain Tel: (+1) 860-868-0131
Independent Consultant Fax: (+1) 860-868-9970
8 South Street Email: rex@rexswain.com
Washington, CT 06793 WWW: http://www.rexswain.com
USA

1 The user-defined operators NWISE and AXIS may be downloaded from the
“Dyalog APL/W Tools and Utilities” section of my WWW home page.

2 Dyadic is adding •AT to APL/W versions 7.2 and 8, so function timestamps
should be available by the time you read this.

3 For more details, see my paper “Namespaces: APL/W vs. APL2” in the APL95
conference proceedings.

